

Monitored Natural Attenuation (MNA):

Assessment, Prediction, and Verification

James E. Landmeyer

U.S. Geological Survey

MNA Outline

- Background
- Assessment
- Prediction/Verification
- References
- Points of Contact

MNA Outline

- Background
- Assessment
- Prediction/Verification
- References
- Points of Contact

MNA is a.k.a.:

- Intrinsic bioremediation
- "Natural attenuation" (circa 1987)
- Natural bioremediation
- Bioreclamation

Brief History of MNA

1997 EPA OSWER Directive:

Natural Attenuation Processes include "physical, biological, and chemical processes". These are:

- Physical = dispersion (D), advection (v)
- Biological = reduction, oxidation (k)
- Chemical = sorption (S)

...Not just biological!

MNA Outline

- Background
- Assessment
 - Hydrogeology (Driving Forces")
 - Geochemistry/Microbiology ("Resisting Forces")
- Prediction/Verification
- References
- Points of Contact

Assessment

Site Assessment Should Consider Multiple Lines of Evidence

- Redox Conditions
 - Presently observed conditions
- Distribution of Daughter Products
 - Record of past conditions
- Hydrologic Framework
 - Prediction of future conditions

Assessment

The efficiency of natural attenuation depends on the balance between these forces:

- Dispersive capacity of the aquifer
- Velocity of groundwater
- Sorptive capacity of aquifer
- Rates of biodegradation

"Driving Forces"

"Resisting Forces"

How is this quantified for use at contaminated sites?

How can we take all of these processes into account, simultaneously?

■ To illustrate, let's do a visual experiment:

Consider a contaminant spill that reaches the water table.
The size of the contaminant plume that eventually develops is controlled by:

- Size of the spill (volume, source area footprint, etc.)
- Velocity of groundwater flow (v)
- Biodegradation (k)
- Sorption (S)

Principle:

Inefficient NA =

slow decrease of contaminants away from source area

Principle:

Efficient NA =

rapid decrease of contaminants away from source area

Efficient Natural Attenuation

Inefficient Natural Attenuation

Next Question:

How do you get this information (D,v) to make a decision about MNA?

- Hydrogeologic info (D, v)
- Monitoring well installation (areally, vertically)
- Water levels, flow directions, gradients
- Flowrates (K)
- Effect of these parameters on contaminant data interpretation

MNA Outline

- Background
- Assessment
 - Hydrogeology (Driving Forces")
 - Principles
 - Tools
 - Geochemistry/Microbiology ("Resisting Forces")
- Prediction/Verification
- References
- Points of Contact

Effects of **Ground-Water Velocity (v) on Contaminant Transport**

Vertical Zonation of K Should Affect Monitoring Well Design

Old Approach, Low Resolution:

- Groundwater flow direction = land topography
- More wells near the source area
- Fewer wells downgradient (nearer the receptors!)
- Wells screened across the water table
- All wells screened at same interval

Problem:

Where is GW (and contaminants) Flowing?

Source Area

Problem:

Assume Dissolved-Phase will be Near Water Table

Result?

Monitoring Wells Often Missed the Plume (Plan View)

Result?

Monitoring Wells Often Missed the Plume Vertically

Two Navy Site Examples:

- Tank Farm C, Beaufort, SC
 (Chapelle, Landmeyer, and Bradley, 1996)
- Laurel Bay, Beaufort, SC
 (Landmeyer, Chapelle, Bradley, 1996)

Laurel Bay Gasoline Station, MCAS Beaufort, SC

April 1993 Laurel Bay Gasoline Station, MCAS Beaufort, SC

January 1998 Laurel Bay Gasoline Station, MCAS Beaufort, SC

June 1996 Laurel Bay Gasoline Station, MCAS Beaufort, SC

MNA Outline

- Background
- Assessment
 - Hydrogeology ("Driving Forces")
 - Principles
 - Tools
 - SCAPS
 - Nested Wells
 - Direct Push
 - Geochemistry/Microbiology ("Resisting Forces")
- Prediction/Verification
- References
- Points of Contact

Hydrogeology Tools

Solution: Higher Resolution Hydrogeologic Site Characterization Tools

- Direct-push (Geoprobe)
- SCAPS Rig
- Waterloo sampler
- Hydropunch samples
- Cone penetrometer
- Borehole flowmeters
- Nested monitoring wells

Goal = Near real-time sampling-interpretation feedback

Solution: Use Near "Real-Time" Field Techniques

Hydrogeology Tools: Nested Wells

Solution: Use Nested Wells

"The farther your groundwater flows, the deeper your wells should go"

Hydrogeology Tools: Direct Push

Direct-Push Approaches: Geoprobe falling-head slug tests - k

MNA Outline

- Background
- Assessment
 - Hydrogeology ("Driving Forces")
 - Geochemistry/Microbiology ("Resisting Forces")
 - Principles
 - Redox
 - Dissolved Hydrogen (DH) Monitoring
 - Tools
- Prediction/Verification
- References
- Points of Contact

Why is

Assessing Geochemistry Important to MNA?

- Groundwater geochemistry is a record of ongoing chemical, physical, and microbial processes
- The efficiency of monitored natural attenuation can often be determined from groundwater chemistry information (i.e., redox conditions)

Principles: Redox

What is a Redox Process?

Electrons that are transferred in chemical or biochemical reaction

$$CH_{2n}O + O_2 \longrightarrow CO_2 + e^-$$

$$CH_{2n}O + O_2 \leftarrow H_2O + CO_2$$

In a Redox Reaction

One compound <u>donates</u> an electron and another compound <u>accepts</u> an electron:

■ Benzene + O_2 \longrightarrow CO_2 + e⁻ (Benzene is electron donor)

• e⁻ + TCE → DCE + Cl⁻ (TCE is electron acceptor)

Electron Flow

- The flow of electrons from donors to acceptors is capable of doing work
- Microorganisms (and everybody else) uses the work done by flowing electrons to support life functions

Biodegradation of PHs is Electron-Donating Process

■ Benzene \longrightarrow CO₂ + e⁻ (benzene donates e⁻)

Because the

Biodegradation of PHs is Electron-Donating Process:

- The availability of electron acceptors determines the rate and extent of biodegradation
 - Oxygen
 - NO₃
 - Fe(III)
 - Mn(IV)
 - Sulfate
 - CO₂
 - Chlorinated solvents!

Principles: Redox

Electron-Accepting Process Sequence

Relative Importance of Biodegradation Mechanisms

Monitoring for Geochemical Indicators of MNA

Analytical Parameter	Field or Laboratory Parameter	Method of Analysis
Dissolved oxygen (DO)	Field	Meter, field kit titration
Nitrate (NO ₃)	Laboratory	Ion Chromatography
Nitrite (NO ₂)	Laboratory	Ion Chromatography
Dissolved ferrous iron (Fe ²⁺)	Field	Field kit spectrophotometer
Sulfate (SO ₄)	Laboratory	Ion Chromatography
Hydrogen sulfide (H ₂ S)	Field	Field kit spectrophotometer
Dissolved Methane (CH ₄)	Laboratory	GC FID
pH (units)	Field	Meter
Eh (redox potential)	Field	Meter
Dissolved Hydrogen (H ₂)	Field	Gas chromatography

Geochemistry/Microbiology Principles: Redox

Molecular

Hydrogen (H₂) Drives Reductive Dechlorination

Source: Gosset and Zinder, 1996

Geochemistry/Microbiology Principles: Redox

What about Redox Processes over <u>space?</u>

Hill AFB Example

Principles: Redox

Total BTEX and Dissolved Oxygen

Total BTEX and Iron (II)

Total BTEX and Sulfate

Total BTEX and Methane

Geochemistry/Microbiology

Principles: Redox

What about Redox Processes over time?

Laurel Bay Example

Francis H. Chapelle
Paul M. Bradley
and
James E. Landmeyer

Geochemistry/Microbiology Principles: Redox

Biodegradation Rates

Depend on Ambient Redox Conditions

June 1996

Laurel Bay Gasoline Station, MCAS Beaufort, SC

Principles: Redox

Early (1994) Depletion of Oxygen

March 1994

Geochemistry/Microbiology Principles: Redox

By 1996,

the Anoxic Zone had Expanded Downgradient

By 1996, Methane Production Had Been Initiated

By 1998, Methane was Present Throughout the Plume

Principles: Redox

H₂ Concentrations, 2000

Principles: Redox

Why Have Redox Conditions Changed so Rapidly?

Extractable Fe(III)

2D Graph 1

Bemidji Data (Tuccillo, Cozzarelli, and Herman, 1999)

Geochemistry/Microbiology Principles: Redox

Conclusions

Redox Conditions Have Changed Rapidly at the Laurel Bay Site

The Rapid Nature of the Redox Changes Reflects the Relative Lack of Fe(III) in Laurel Bay Sediments

MNA Outline

- Background
- Assessment
 - Hydrogeology ("Driving Forces")
 - Geochemistry/Microbiology ("Resisting Forces")
 - Principles
 - Redox
 - Dissolved Hydrogen (DH) Monitoring
 - Tools
- Prediction/Verification
- References
- Points of Contact

Geochemistry/Microbiology Principles: DH

Steady-State Hydrogen Concentrations Reflect Redox Processes

Terminal Electron- Accepting Process	Characteristic Hydrogen Concentration (nM)
Denitrification	0.1
Fe(III) Reduction	0.2 – 0.8
Sulfate Reduction	1.0 – 4.0
Methanogenesis	>5.0

Geochemistry/Microbiology Principles: DH

Molecular

Hydrogen (H₂) Drives Reductive Dechlorination

Source: Gosset and Zinder, 1996

Concentrations of Stages of Chlorinated Ethenes

So it Becomes Very Important to:

- Distinguish Oxidizing from Reducing Environments
- In Reducing Environments, to distinguish between:
 - Methanogenesis
 - Sulfate reduction
 - Fe(III) reduction
 - Nitrate reduction

MNA Outline

- Background
- Assessment
 - Hydrogeology ("Driving Forces")
 - Geochemistry/Microbiology ("Resisting Forces")
 - Principles
 - Tools
 - Laboratory Methods
 - Contaminant Loss
 - Radiotracer
 - Bioavailable Iron Assay
 - Field Methods
- Prediction/Verification
- References
- Points of Contact

Development of a DH Analyzer and a Bioavailable Ferric Iron Assay

PROJECT NUMBER 200009 Carmen A. Lebron/NFESC Dr. Patrick Evans/Camp Dresser & McKee Inc.

Goals:

- Demonstrate correlation between bubble strip method and DH analyzer
- Validate the bioavailable Fe(III) assay using
 - Redox characterization
 - Precipitants mineral characterization
 - Assessment of site data
- Quantify costs of each technology

Contaminant Loss Over Time, Microcosm Study

Limitations of Contaminant-Loss Approach:

- Often have to go on for long periods of time (up to a year), and in that time, the microbiology of the microcosm can change
- Are very expensive to do
- Results depend heavily on the skill of the investigator

Radiotracer Approach

■ $^{14}\text{C-Benzene} \longrightarrow ^{14}\text{CO}_2$

Limitations of Radiotracer Approach

- Results depend upon accurate matching of experimental to ambient electron-accepting conditions
- Results depend on skill of investigator

Bioavailable Ferric Iron Assay

Bioavailable Fe(III) Assay Protocol

Cost Comparison: Bioavailable Fe(III) Analysis

Method	Microcosm Research (Standard Assay Not Avail.)	Bioavailable Fe(III) Assay
Capital Cost	\$0 if laboratory is available	\$100
Cost/sample	\$1,000 (assuming 10 samples)	\$ 50
Implications	 Requires treatability laboratory Requires specialized training HCl extraction unacceptable 	Field kitLike Hach kit

MNA Outline

- Background
- Assessment
 - Hydrogeology ("Driving Forces")
 - Geochemistry/Microbiology ("Resisting Forces")
 - Principles
 - Tools
 - Laboratory Methods
 - Field Methods
- Prediction/Verification
- References
- Points of Contact

- Redox
 - Equilibrium Approach
 - Kinetic Approach
- Hydrogen
- Bubble Stripping
- Hydrogen Analyzer
- Dispersion Model
- Conservative Tracer Model
- Flux Model

Methods for

Evaluating Redox Processes in GW Systems

Equilibrium Approach:

- Based on Thermodynamic Equilibrium
 - Eh Measurements

Kinetic Approach:

- Based on Microbial Physiology
 - Identify Predominant Microbial Electron-Accepting Processes
 - Hydrogen Measurements

Equilibrium Approach (becoming out of date)

- Platinum Electrode Eh Measurements
- Measure Concentrations of Redox Couples
- > 0 = "oxidizing"
- < 0 = "reducing"</p>

Kinetic Approach (more generally useful)

- Measure Concentration Changes of Electron Acceptors
- Measure Concentration Changes of Final Products
- Measure Concentrations of Transient Intermediate Products (Hydrogen)

Identifying Redox Processes

Plattsburg AFB: Eh

Using: Equilibrium Approach

Geochemistry/Microbiology Field Tools: Redox

Equilibrium Approach Indicates that Fe(III) Reduction Predominates:

Plattsburg AFB

- Poor efficiency for Reductive Dechlorination
- Good efficiency for VC oxidation

Identifying Redox Processes

Identifying Redox Processes

Plattsburg AFB

Using: Kinetic Approach

DH (H₂) Concentrations

Identifying Redox Processes

Plattsburg AFB

Methane Concentrations

Using: Kinetic Approach

Identifying Redox Processes

Plattsburg AFB

Using: Kinetic Approach

Redox Zonation and Predicted Contaminant Fate

Identifying Redox Processes

How Redox Conditions Affect NA at Plattsburgh AFB

- Methanogenic conditions at contaminant source produces
 DCE and VC
- Fe(III)-reducing conditions in plume oxidizes VC

Redox Conclusions

- The <u>Equilibrium Approach</u> did not accurately characterize the redox chemistry at this site
- The <u>Kinetic Approach</u> accurately identified discrete methanogenic, sulfate-reducing, and Fe(III)-reducing zones
- The sequential methanogenic-Fe(III)-reducing conditions lead to efficient natural attenuation

When Hydrogen Analyses are Useful

- Already showed example of hydrogen at Laurel Bay, but usefulness at PH-contaminated site is limited
- Some chlorinated solvents plumes are being attenuated without the appearance of transformation products
- Some indicators are mobile!

Bubble Stripping Results

Dissolved Hydrogen Analyzer

Cost Comparison: DH Analysis

Method	On-Site Bubble Strip with Reduction Gas Analyzer	DH Analyzer
Capital Cost	\$30,000 (Trace RGA)	\$5,000
Cost/sample	\$100 (Microseeps fee)	\$20
Implications	 Requires specialized training Faulty sampling methodology can yield misinterpretation of data Option is to sample and send gas to fixed lab Off-site analysis does not allow for QA/QC of sampling method 	 Makes sampling independent of user Field analysis

Dispersion Model Approach

 Assumes D and v are known, so that k can be determined by curve-fitting

Conservative Tracer Approach

Compares degrading vs. nondegrading solutes:

How do these Field vs. Lab Methods Compare?

Clearly, any biodegradation rate measurements are order-of-magnitude estimates, because:

Field methods

- Poor characterization of the plume
- Hydrologic variability

Laboratory methods

- Investigator-skill bias
- Improper matching of field to lab conditions

Radiotracer Approach vs. Dispersion Model

Potential Shortcomings of Both Models

Radiotracer Approach vs. Dispersion Model

- Need to know GW flowpath
- GW wells need to be along that flowpath
- Flowpath needs to remain fixed in space and time
- Steady-state conditions
- Presence of conservative tracer

Geochemistry/Microbiology Field Tools: Flux Model

Possible

alternative approach without these constraints:

Flux Model Approach

Shifting GW flowpaths shifts plume centerline

Flux approach is more realistic, b/c total mass would be included

Compute rate of mass flux for each cross section

(units of F are Mass per time, or microgram/day)

Chlorinated VOC Plume

Field Evidence (VOCs) for Biodegradation

Distribution of Redox Processes

Intermediate Aquifer

September 1996 Biodegradation Rates (d-1)

Geochemistry/Microbiology Field Tools

April 1997 Biodegradation Rates (d⁻¹)

Geochemistry/Microbiology Field Tools

March 1998 Biodegradation Rates (d⁻¹)

Half-Lives (In2/bio. rate): Intermediate Aquifer

		TCE	(ln2/-0.0041)	0.46 years
--	--	-----	---------------	------------

MNA Outline

- Background
- Assessment
- Prediction/Verification
 - "Natural Attenuation Capacity" Method
- References
- Points of Contact

Dispersion Model Approach

 Assumes D and v are known, so that k can be determined by curve-fitting

Numerical Solutions to GW Flow/ST Equation:

- BIOPLUME (1,2,3, Son of Bioplume, etc.)
- BIOSCREEN
- MODFLOW
- SUTRA
- MT3D
- Assimilative Capacity (MNA) Screening Tool Spreadsheet

MNA Outline

- Background
- Assessment
- Prediction/Verification
- References
- Points of Contact

MNA References

- Chapelle, 1999, Ground Water, v. 37: 122-132.
- EPA OSWER Directive 9200.4-17P,1999. Use of Monitored Natural Attenuation at Superfund, RCRA, Corrective action, and UST sites.
- Chapelle, Landmeyer, and Bradley, 1996. USGS WRIR 95-4262.
- Landmeyer, Chapelle, and Bradley, 1996. USGS 96-4026.
- Chapelle, Robertson, Landmeyer, and Bradley, 2000. USGS WRIR 00-4161.
- Lovley, Chapelle, and Woodward, 1994. Environmental Science & Technology, v. 28: 1205-1210.
- Bradley and Chapelle, 1996. Environmental Science & Technology, v. 30: 2084-2086.
- Chapelle and others, 1997. Environmental Science & Technology, v. 31: 2873-2877.
- Landmeyer and others, 1998. Ground-Water Monitoring and Remediation, v. 18: 93-102.

MNA Outline

- Background
- Assessment
- Prediction/Verification
- References
- Points of Contact

MNA Points of Contact

- Jim Landmeyer, USGS, Columbia, SC
 - E-mail: <u>ilandmey@usgs.gov</u>
 - Phone: (803) 750-6128
- Carmen Lebron, NFESC ESC411, Port Hueneme, CA
 - E-mail: <u>lebronca@nfesc.navy.mil</u>
 - Phone: (805) 982-1616